(05/16-1)

5217

B. Sc. EXAMINATION

(Fourth Semester)

PHYSICS

Seventh Paper

Statistical Physics

Time: Three Hours Maximum Marks: 40

Note: Q. No. 1 is compulsory. Four more questions are to be attempted, selecting *one* question from each Unit. Use of scientific (non-programmable) calculator is allowed. Log tables may be asked for.

Compulsory Question

- 1. (a) What is Phonon? . 11/2
 - (b) What is the Statistical definition of Entropy?

(2-03) B-5217 P.T.O.

(c) What is Fermi Gas? Give an example.

- (d) Where does the Dulong and Petit's law fail 21½
- (e) What do you mean by Phase Space ? 1
- (f) What is the minimum size of phase space cell in classical statistics?

Unit I

2. (a) Define Microstates, Macrostates,
Thermodynamic probability and
constraints. Differentiate between
accessible states and in accessible states.
Discuss the distribution of 4 particles in
two compartments of equal size. 5

https://www.cdluonline.com

- (b) Derive the condition $\beta_1 = \beta_2$ for equilibrium of two systems in thermal contact.
- 3. (a) What do you mean by statistical fluctuations? Derive an expression for the probability of a macrostate which deviates by a small amount from the most probable macrostate.

B-5217

2

https://www.cdluonline.com

https://www.cdluonline.com

r. t.O.

https://www.cdluonline.com

https://www.cdluonline.com

Find the number of accessible microstates (b) (Thermodynamic Probability) of a system having an entropy of 40 cal/Kelvin in the equilibrium state. Given:

$$K = 1.38 \times 10^{-23}$$
 Joules/Kelvin
1 Cal = 4.2 Joule

Unit II

The probability of a molecule having x-(a) component of velocity in the range (v_{ij}) and $(v_x + dv_y)$ is given by :

$$p(v_x) dv_x = \left(\frac{m}{1\pi KT}\right)^{3/2} e^{-\frac{mv^2}{1kT}} dvx$$

show that:

- Maximum value of $P = \left(\frac{m}{1\pi KT}\right)^{1/2}$
- (ii) Average value of $(v_x^2) = \left(\frac{KT}{m}\right)$

P.T.O.

(2-03) B-5217

https://www.cdluonline.com

https://www.cdluonline.com

- the r.m.s. speed of oxygen molecules at N.T.P.
- Using the M.B. law of distribution of speeds:

$$n(v) dv = 4\pi n \left(\frac{m}{2\pi kT}\right)^{3/2} e^{-\frac{mv^2}{2kT}} v^2 dv$$

https://www.cdluonline.com

If the r.m.s. speed of molecules of

Hydrogen at NTP is 1 km/sec, calculate

Find an expression for :

- The most probable speed
- (ii) The average speed
- What are different kinds of statistics and briefly discuss the basic approach in these statistics.

Unit III

Using BE distribution law, derive Planck's (a) law for black body radiation in terms of wavelength. 5

B-5217

https://www.cdluonline.com

https://www.cdluonline.com

Calculate the Fermi energy for sodium assuming that it has one free electron per atom.

Given
$$\frac{n}{V}$$
 = free electron density = 26.0×10^{27} electron/m³

Starting from basic assumption of F.D. (a) statistics, derive the relation:

$$n_i = \frac{g_i}{\alpha \beta u_i}$$

$$ee + 1$$

(where the symbols have their usual meaning.)

and also show that in the limiting case F.D. statistics are reduced to M.B. 5 Statistics.

Calculate the number of different arrangement of 10 indistinguishable particles in 15 cells of equal a prior probability, considering that one cell contains only one particle.

(2-03) B-5217

P.T.O.

https://www.cdluonline.com

https://www.cdluonline.com

Unit IV

- Derive Debye's expression from the specific heat of solids. Hence explain Debye's T³ law.
 - Explain, how the Debye's model is different from the Einstein's model of specific heat of solids.
- Derive an expression of Dulong and 9. (a) Petit's law from classical physics.
 - Find the Einstein temperature, if Einstein frequence (v_E) is 3.0×10^{12} Hz.

B-5217

3,220

https://www.cdluonline.com