'n

(2-62/13)R-11671

11671

M. Sc. (2 Year) EXAMINATION

(For Batch 2017 & Onwards)

(Fourth Semester)

MATHEMATICS

MTHCC-2401

Functional Analysis

Maximum Marks: 70 Time: Three Hours

Note: Q. No. 1 is compulsory. Attempt Five questions in all, selecting one question from each Unit including compulsory question.

- If N is a normed linear space, then $||x| - ||y|| \le ||x - y||$ for all $x, y \in \mathbb{N}$.
 - Define conjugate operator.
 - Define isometric isomorphism.

Prove that l' is not reflexive. (d)

Define a closed linear transformation,

In a pre-Hilbert space, every Callel (f)

In N is a normal operator on h (g) then:

$$||N^2|| = ||N^2||$$

Section I

- Let N be a normed linear space. The closed unit Ball $B = \{x \in X : ||x|| \le 1\}$ N is compact if and only if N is finite dimensional.
 - State and prove F. Riesz's lemma. (b)
 - 3. If N and N' are normed linear spaces, then the set B(N, N') of all continuous L.T. of Nim N' is itself a normed linear space with respect to the pointwise linear operations and the norm defined by:

B-11671

https://www.cdluonline.com

P.T.O.

$||T|| = \sup\{||Tx|| : ||x|| < 1\}$

Further if N' is a Banach space, then B(N N') is also a Banach space.

Section II

- 4. (a) Let M be a closed linear subspace of a normed linear space N and let vo be a vector not in M, then there exists a functional F in N* such that F(M) \{0\} and $F(x_0) \neq 0$.
 - (b) Show that C[0,1] is not reflexive
- 5. Let N be an arbitrary normed linear space Then for each vector $x \in \mathbb{N}$, the scalar valued function F_x defined by:

$$F_x(f) = f(x) \forall f \in N^{\bullet}$$

is a continuous linear functional in N** and the mapping $x \rightarrow F_x$ is then an isometric 14 isomorphism of N inti N**.

Section III

- A linear transformation is closed in graph is a closed subspace.
 - in a finite dimensional space, the notice of weak and strong convergence as equivalent.
- A Banach space is a Hilbert space if parallelogram law holds.
 - the lf M is a proper closed linear subspace of a Hilbert space H, then there exists a non-zero.

Section IV

- 8. (a) Let H be a Hilbert space and let (ei) te an orthonormal set in H. then the following conditions are all equivalent one another:
 - (i) $\langle e_i \rangle$ is complete
 - (ii) $x \perp \langle e_i \rangle \Rightarrow x = 0$

B-11671

C-62/14)B-11671

P.T.O.

- (iii) If x is any arbitrary vector in H, then $x = \sum (x, e_i)e_i$.
- (iv) If x is any arbitrary vector in H, then $||x||^2 = \sum |(x, e_i)|^2$.
- The self adjoint operators in B(H) form a closed real linear subspace of B(H) (b) and therefore a real Banach space-which contains the identity transformation.
- If P is a projection on H with range M and null space N, then $M \perp N, \Leftrightarrow P$ is self-adjoint and in this case $N = M^{\perp}$. 7
 - If N₁ and N₂ are normal operators on a Hilbert space H with the property that either commutes with the adjoint of the other, then $N_1 + N_2$ and $N_1 N_2$ are normal.

40